基于多策略改进的混合元模型全局优化算法及工程应用

打开文本图片集
中图分类号:TH123 文献标志码:A 文章编号:1671-5276(2025)06-0157-07
Abstract:Inordertoimprovehighlynonlinearandcomputation-intensiveengineeringoptimization,thispaperinitiatesanovel Multi-strategyenhanced hybridmetamodel-based globaloptimizationalgorithm(MS-HAM),which incorporatesahierarchical designspaceupdateapproachand variable sampling size strategies toenhance performance.Akeyregionupdate strategydivides thedesignspaceinto keyandcommonregions,andthekeyregionisadaptivelyupdatedbasedonsearchresultsto improve accuracyandconvergencespeed.Coarseanddensesamplingstrategiesareemployedatdiferentstagesofoptimizationtoenhance searcheficiencyandprevent prematureconvergencewithinalimiteddesignspace.Theefectivenessof theoptimizationalgorithm is validatedbycomparing itagainst existing methodsonthree benchmark optimization problemswithvarying numbersof variables.TheMS-HAMoptimizationmethod isaplied tooptimizethedesign parameters ofareal-worldengineeingcase study involvingaworkoverrigarm.TheresultsdemonstratethattheproposedMS-HAMalgorithm exhibitshighaccuracyandefficiency in optimizing computationally intensive problems,suggesting its broad applicability in engineering.
Keywords:MS-HAM algorithms;construction work vehicle;structural optimization
0 引言
随着科学技术的发展,在工程设计中,为了降低成本和时间,物理实验越来越广泛地被计算机模拟所取代[1]。(剩余8399字)