基于VMD-CWT和SwinTransformer的滚动轴承故障诊断方法

打开文本图片集
中图分类号:TH133.33 文献标志码:A 文章编号:1671-5276(2025)06-0018-06
Abstract:Inresponsetothenoiseinterferenceandinaccuratefaultfeatureextractioninrolingbearing faultsignals,an inteligentfaultdiagnosismethodforrolingbearingscombiningvariationalmodedecomposition(VMD),continuouswavelet transform(CWT),andthe Swin Transformernetwork isproposed.Thesignalisdenoisedusing variational modedecomposition, andthe econstructed signal isconverted into a time-frequency map using CWT.The two-dimensional feature maps obtained fromthetime-frequencymapsareusedasinputs totraintheSwinTransformermodel,achieving intellgentfaultdiagnosisof roling bearings.TheexperimentalresultsindicatethatthemethodcombiningVMD-CWTwith Swin Transformer network has better fault diagnosis accuracy,with the accuracy of the test set in the measured data up to 99.79%
Keywords:rolingbearing;variationalmodedecomposition;continuous wavelettransform;Swin Transformer;faultdiagnosis
0 引言
随着工业设备的广泛应用,滚动轴承在各种旋转机械设备中起着不可或缺的作用,准确识别轴承故障类型并及时采取有效维修措施至关重要。(剩余8237字)