融合深度学习的航空发动机故障诊断知识图谱的构建及应用

  • 打印
  • 收藏
收藏成功


打开文本图片集

Abstract:Inresponsetothechalengethat traditionalmethodsofdiagnosingfaultsinaero-engineeasilyleadtoknowledge wastageand gradual inadequacyforcomplexwork demands,knowledge graphscanbeanefectivesolution.Thisarticleproposes amethodforconstructingandapplyingaknowledgegraphforthediagnosisofaircraftenginefaults,integratingdeeplearing.A named entityrecognitionalgorithmisintroducedbasedonBERT-BiLSTM-Atention-CRFforidentifying entitiesinthecorpusof aircraft enginefault diagnosis.BERTis leveraged to generatecharacter embedding features,BiLSTMisutlizedtocapture contextualfeatures,andatentionmechanismsareincorporatedtohighlightthekeyinformationfrombothforwardandbackward contexts.Experimentalresultsinnamedentityrecognitiondemonstratethattheproposedalgorithmcanenhanceentity identificationefctiveness,providing prerequisitefortheknowledgegraph construction.Basedoncorpussyntax,entity relationshipsarematched,andtheNeo4jgraphdatabaseisappliedasthefoundationforhighlyvisualizedmanagementofthe knowledge graphAndthe knowledge graph is harnessd todesign an intellgent question-answering,enhancing fault resolution ratesand providing knowledge support for autonomous fault diagnosis.

Keywords:aero-engine;fault diagnosis;knowledge graph;entity recognition;knowledge Q&A

0 引言

航空发动机作为现代工业中的关键技术和产品,是国家科技、国防和经济发展战略的重要组成部分[]。(剩余6018字)

目录
monitor
客服机器人