数字孪生技术在新能源汽车维修培训中的实践研究

  • 打印
  • 收藏
收藏成功

中图分类号:U469.72 文献标识码:A 文章编号:1003-8639(2025)09-0072-02

acticalResearch onDigital Twin TechnologyintheMaintenance TrainingofNewEnergy Vehic

Zheng Gang (Zhoushan Technician College,Zhoushan 316ooo,China)

【Abstract】This paper conducts research on the application of digital twin technology in the maintenance training ofnew energyvehicles.Firstly,itssummarizesthatdigitaltwin technologyhas thecharacteristicsof virtualreal integration,precise simulation,predictability and iterative optimization.Then,the challnges faced by the maintenance training of new energy vehicles,such as complex technology,high practical operation risks,high training costs,and limitedtraining resources,are analyzed.Onthis basis,the specificapplications ofthis technology in constructing virtual maintenance scenarios,simulating faults and maintenance processes,achieving remote collaborative training,and conducting training efect evaluationsand feedback areexpounded.Atthe same time,it is pointed out that it has advantages such as improving training quality,reducing training costs,ensuring training safety,andadapting totherapiddevelopmentof technology.Finaly,itisexpectedthatthis technologywillpresent development trends such as technology integration,diversified training scenarios,andthe popularizationof intellgent trainingsystems inthis field,aiming toprovide useful references forthe maintenance training of new energyvehicles.

【Key words】digital twin technology;new energy vehicles;maintenance training;practical application

1数字孪生技术概述

数字孪生(DigitalTwin,DT)技术是一种通过创建物理实体的虚拟模型,并利用传感器数据、历史数据等实时更新虚拟模型状态,实现物理实体与虚拟模型之间双向映射和交互的先进技术[1]

该技术具有以下显著特点: ① 虚实融合,紧密结合物理与虚拟世界,实现数据实时交互同步,使虚拟模型真实反映物理实体状态; ② 精准模拟,借助高精度建模和仿真技术,数字孪生技术能够准确地模拟物理实体行为和性能,为分析决策提供可靠依据; ③ 具备预测性,基于历史和实时数据,运用机器学习、大数据分析等技术预测物理实体的未来状态,提前发现潜在问题并采取措施; ④ 可迭代优化,在虚拟环境中,数字孪生技术可以不断优化物理实体的设计和运行参数,并将优化结果应用于物理实体,提升其性能。(剩余2025字)

目录
monitor
客服机器人