应用 Ωt. -SNE流形学习方法的盾构刀盘磨损信号降维

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:盾构刀盘;性能评估: ;t- 分布随机邻域嵌入;信号降维中图分类号:U455 文献标志码:A 文章编号:1671-5276(2025)03-0096-04

Dimension Reduction of Shield Cutterhead Wear Signal by t -SNE Manifold Learning Method

HUANG Yuhua1,LI Feng² (1.School of Architecture and Electrical Engineering,Hezhou University,Hezhou 532899,China; 2.School of Civil Engineering,Guangxi University of Science and Technology,Liuzhou 545oo6,China)

Abstract:Inordertoenhancetheabilityofmonitoringtherunningstabilityofshieldcuterhead,amethodfordimensionality reduction and performance evaluation of torque vibration signal of shield cutterhead based on t- SNE manifold learning was designed.Acording totheactual parametersof shieldequipment,theidentificationofcuterstateparameters wasrealizedby data driven.The results show that compared with ISOMap,LLE,KPCA,etc.,using t -SNEmanifold dimensionalityreduction can obtain a longer t -distribution,so that thelow-dimensional far end pointswillhave a larger low-dimensional interval,and canaccuratelyclasifynormalanddegeneratesamples,andaccuratelyidentifyhigh-dimensionaldatacontaining low一 dimensional manifold.Thevariationof normaloperatingconditionsandfaultmaintenancesampling interval in Markov spaceis small,andtheuseof time-dependent Markovdistance measure toevaluatetoolperformancecanobtain higherprecision, efctivelyeliminatethecorrelationbetween diferentdimensions,and havebeterperformancethanEuclideandistance.

Keywords:cutter head of shield tunneling;performance evaluation; t- distributed random neighborhood embedding;signal dimension reduction

0 引言

刀盘在盾构装备中是一个核心受力部件,能够实现掘进并维持开挖面稳定,直接影响掘进效率[1-2]。(剩余4443字)

目录
monitor