基于双向长短记忆网络和注意力机制的鸡白痢病音频检测

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:S831.4;TP391.4 文献标识码:A 文章编号:2095-5553(2025)08-0066-10

Abstract:Chicken dysentery,causedby Salmonella pulorum,isacontagious disease that poses asignificant threattothe poultryindustry.Given the importance of early monitoring in preventing the spreadof the disease,this study proposes a deeplearning-basedaudiorecognitionmodelnamedFlockVigil—Net,aimedatachievingeficientdetectionofchicken dysentery.This paper first employs the Smooth—HF denoising method,which combines a smoothing mechanism spectral subtractionandahigh-passfiltertoextractclearchickencrowing fromcomplexsounddatathat includeschicken vocalizations,behavioral noises,and environmental noises.Subsequently,an endpoint detectionalgorithm based on time-limitedconditionssegments thechickenvocal segments,and calculates three featuresofthe chickencrowing:the spectrogram,FBANK,andMel-frequencycepstral coeficients(MFCC),further forming a feature merge graph, providingrichacousticinformationfordiseaseidentification.TheFlockVigil—Netmodel integratesconvolutionalneural networks,bidirectional long short-term memory networks (BILSTM),andmulti-head attention mechanisms,achieving high-accuracyidentificationofchickensinfectedwithchickendysentery.Experimentalresultsshowthatfromthesecondto the eighth day after confirmation of chicken dysentery,the model's recognition rate increased from 86.53% to 90.26% : Compared with other speech recognition models,FlockVigil—Net demonstrates superiorperformance.Thisstudy provides an eficient and accurate audio detection method for the early diagnosis of chicken dysentery.

Keywords:chicken disease detection;bidirectional longshort-term memory network;atentionmechanism;spectral subtraction

0 引言

1材料和预处理

伴随着养鸡业向规模化、集约化饲养方向发展,养殖密度不断增加,传染病问题日益严重,给农民造成巨大损失。(剩余14047字)

目录
monitor