基于优化YOLOv5算法的玉米苗间杂草检测研究

打开文本图片集
中图分类号:S451 文献标识码:A 文章编号:2095-5553(2025)07-0220-06
Abstract:Toaddress the problems of diverse weedspecies,high detection complexity,and slow detection speed in the detection of weedsamong maize seedlings,thispaperproposesa weed detection method based on optimized YOLOv5 algorithm.The SE parameter-freeatentionmoduleis introduced intotheconvolutional layersof theYOLOv5 backbone network,withthe SE一integrated C3module replacing theoriginal C3 moduleto beterfocus ondetection targets. The traditional residual neural network is replaced with the BoTNetmodule,andglobal multi-headself-attention is used to replace 3×3 spatial convolution in thelastthree botleneck blocksof ResNet,thereby improving the accuracy of detecting smalltargets.The improvedtargetdetectionalgorithmisused todetect weeds,withnon-maizeseedlingareas inthe fieldlabeledasweeds.The super-green feature,combinedwith the OTSU threshold segmentation algorithm,is used tosegment thesoilbackgroundandidentifytheforegroundareasof weeds,effectivelysolving theproblemof weed detection inmaizesedling fields.The resultsshowthattheimproved YOLOv5algorithmachievesatarget detection precision of 97.5% for maize seedlings,which is 7.4% higher than the original YOLOv5 algorithm. The detection speed reaches 40ms ,thereby improving the detection accuracy and model robustness to meet the needs of real-time detection.
Keywords:wed detection among maize seedlings;YOLOv5;attention module;BoTNet module;super-green feature; OTSU threshold segmentation
0 引言
与高产作物争夺生长空间、阳光、水分和土壤养分,容易引发病虫害等问题,严重影响作物的健康生长,从而导致农产品的产量和质量下降[1,2]。(剩余9282字)