基于MaskR一CNN的轻量级草莓实例分割算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

DOI:10.13733/j.jcam.issn.2095-5553.2025.07.018

Abstract:Inresponse tothecomplexityoftheorchardpicking environment,thedificultyofacuratesegmentation betweenstrawberies andthesurrounding environment,and the inabilityof the existing model processing speedtorealize fastsegmentation,asegmentationalgorithmoflightweight strawberry instance based on Mask R—CNNisproposed.Onthe basis of theoriginal MaskR—CNNalgorithm,theMobileNetV3network isusedtoreplace theoriginal ResNet101 backbonenetwork,thealgorithmislightweight,andthechannelatentionmechanismintheoriginalMobileNetV3 residualstructure isreplacedbythecolaborativeatentionmechanism module,which iscombinedwith the feature pyramidnetworkarchitecturetoperformthefeatureextraction,andthestrawberyindividualsarerealized.The preciseand fastlocalizationsegmentationofindividual strawberiesisachieved.Finallycomparison experimentsareperformedontheselflabeleddataset.TheexperimentalresultsshowthattheproposedimprovedMaskR—CNNalgorithmimprovesborder (2号 mAP and mask mAP by 75% and 4.05% respectively,and the detection speed by 2o.O9 frames/s compared with the original Mask R—CNN model,which reduces the dependence of the model on hardware storage space and arithmetic power.

Keywords:strawberry image;instance segmentation;improved Mask R—CNN;CA atentionmechanism;lightweight network

0 引言

随着城镇化不断推进,劳动力人数减少,人工成本增长等问题日益严重,果蔬采摘时间占整体生产时间的 25% ,采摘成本占总成本约 50%[1] 。(剩余9570字)

目录
monitor