基于改进YOLOv7一tiny的烟叶主脉轻量化检测研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:S238 文献标识码:A 文章编号:2095-5553(2025)07-0138-07

Abstract:Inordertoaccuratelyidentifythemainveinoftobacoleaf,realizemechanicalgraspingandreducetherateof grasping damage,animprovedlightweightobaccoleaf mainveinsrecognitionmodelbasedonYOLOv7—tinywasproposedFirstly, theoriginaltrunk featureextractionnetwork isreplacedbyamore lightweight MobileNetV3basedonYOLOv7—tinynetwork, thedefaulth-swishactivationfunctioninthemoduleisreplacedbyReLUactivationfunction.Then,thecommonconvolutionof theneckisreplacedbyalightweightGSConvandaSlim—Neckdesignisadoptedtoompressthechannelofthemodelandeliminate theredundantfeatureredundancyinordertolightenthenetworkstructure.Atlast,theSIoUlossfunctionwas introducedtoreduce thelossvalueofthemodelandenhancethefusionabilityof themodeltothemainveinoftobaco.Theresultsshowedthatthemap value of the improved model on the tobacco leaf dataset was 91.3% ,at a cost of only 1.6% loss,the parameter quantity was reduced by 51.1% compared with the original model,and the computational load was 4.3G ,only 32.6% of the original model (13.2G). Compared with YOLOv5—s ( 16.5G ,YOLOv6—n(11.4G),Yolox—s (26.8G),YOLOv8—n(8.7G),and YOLOv9—t (7.7G),allofthemwereimproved.Theimprovedmodelcanbedeployedinthemarginalequipmentwithscarcecomputing resources,which provides some technical support for the mechanized harvesting of tobacco leaves.

Keywords:tobacco leaf main veins;lightweight;mechanized harvesting;accurate identification;marginal deployment

0 引言

有重要影响。(剩余12308字)

目录
monitor