基于机器视觉技术的辣椒果实炭疽病病害分级方法研究

打开文本图片集
关键词:辣椒(CapsicumannuumL.)果实;机器视觉技术;炭疽病;病害分级
中图分类号:TP391.41;S436.418 文献标识码:A
文章编号:0439-8114(2025)08-0017-07
DOI:10.14088/j.cnki.issn0439-8114.2025.08.003
Research on anthracnose disease grading method for pepper fruits based on machine vision technology
ZOUWei,YUEYan-bin,LILi-jie,CHENWei-rong,HANWei,ZHUCun-zhou (Guizhou Agricultural Science and Technology Information Institute,Guiyang 55ooo6,China)
Abstract:Toaddress theissesofstrongsubjectivityandlowdetectioneficiencyintraditionalpepper(CapsicumannuumL)disease gradingmethods,thisudyproposedamachinvision-basedsemanticsegmentationmodelforautomatedrapidgradinganddentificationofanthracnose-infectedpepperfruits.Undercontroledenclosedenvironments,sunlightwassimulated,andimagesof healthyfruitsandfourdiseaseseveritylevelsacrossdiferentpeppervarietieswerecollcted.Principalcomponentanalysisasemployedtoreduceredundantimagefeatures,extracting threekeycolorcomponents(Cb,Cr,R)withacumulativecontributionrateof 95 % .Model1(Decision Tree),model2(Naive Bayes),model3(SVM),and model4(KNN)were trained.Model1(Decision Tree)demonstratedthesortesttraining tieandhighestprecision,stablisingitastheoptialpredictiomodelforanthracosediseasegrading.Itrequiredlowcomputationalresourcesandoccupied minimalmemory,facilitating future edgedeployment.Model1 achieved precision rates of 90.3%~98.2% for pepper fruits and 75.3% ~80.7% for disease spots.Its recall rate for anthracnose disease grading was 73.3%~93.3% ,with the recall rate for healthy peppers(Level O) exceeding 90.0% . The prediction results of model 1 showedighconsistencywithmanualanotationsacrossalldiseaselevels,verifingitsapplicabiltinautomateddiseaseoitoring systems as a replacement for manual visual grading methods.
Key words : pepper(Capsicum annuum L.) fruit;machine vision technology;anthracnose;disease grading
辣椒(CapsicumannuumL.)作为中国广泛种植的蔬菜作物,种植面积及产量常年位居世界首位。(剩余7845字)