基于改进RT-DETR模型的油菜田间杂草识别研究

打开文本图片集
关键词:油菜;改进RT-DETR模型;RT-DETR模型;杂草识别
中图分类号:TP391.4;TP183;S451.1 文献标识码:A
文章编号:0439-8114(2025)08-0001-09
DOI:10.14088/j.cnki.issn0439-8114.2025.08.001 开放科学(资源服务)标识码(OSID):口
Research on rapeseed field weed recognition based on improved RT-DETR model
ZHANGLei,LENGXin,CHENJia-kai,LI Zong-xuan (College of Computerand Control Engineering,Northeast Forestry University,Harbin15OO4O,China)
Abstract:FourtialdXantmtrumaieriaidis,henopoumlbumbosiatemisifoiiniapsdeld weretakenastheresearchobjects.Keychalenges inweeddetection,includingsmallseedlingtargets,weakfeaturesof withered weds,anddificultyinidentifinghighlyoverlappingareas,ereaddressdbyproosinganimproveddetectionmethodbasednthe RT-DETR(Region transformerDETR)model.Theasymptotic eature pyramid network(AFPN)replacedtheoriginalcross-scale contextfusionmodule(CCFM)intheRT-DETRmodel,effectivelyresolvingtheimbalancedfeaturedistributionissueinwitheredwedscausedbyblurredtextureandfeature sparsity.TheSPD-Convmodulewas introduced intothebackbone network toenhance thefeaturerepresentationcapabilityforsmalltargetweds.Theconvolutionalblock atentionmodule(CBAM)wasintegrated attheendofthebackbonenetwork,efectivelymitigatingfeatureinformationlossunderlow-resolutiontargetsandolusionconditions.Systematic ablation experiments and comparative experiments verified that the improved RT-DETR + AFPN + SPD-Conv+CBAM (RW-DETR)modeldemonstratedsignificantadvantagesinbothdetectionaccuracyandrobustnessTheRW-DETRmodelachieved recognition precision and mean average precision of 85.2% and 82.5% ,respectively,for weeds in rapeseed fields,significantly outperformingtheRT-DETRmodel,FasterR-CNNmodel,SSDmodel,YOLOv5m model,andYOLOv8m model.Whilemaintainingrealtimedetectionperformance,theRW-DETRmodelsignificantlyimprovedweedrecogitionefectivenessincomplexsenes,mting theaccuracy and efficiency requirements of modern agriculture for weed detection systems.
Key Words:rapeseed;improved RT-DETR model; RT-DETR model;weed recognition
油菜是全球种植广泛的油料作物,油菜子主要用于榨取菜子油。(剩余12134字)