基于改进YOLOv8的轻量化水稻病虫害识别模型研究

打开文本图片集
中图分类号:S126,TP391.41 文献标识码:A
文章编号:0439-8114(2025)08-0010-07
DOI:10.14088/j.cnki.issn0439-8114.2025.08.002 开放科学(资源服务)标识码(OSID):口
Research on a lightweight rice pests and diseases recognition model based on the improved YOLOv8
LI Peng-fei, ZENG Jing
Economics and Management School,Yangtze University,Jingzhou 434O23,Hubei,China)
Abstract:BasedontheYOLOv8 model,the ShufleNetv2 moduleandtheConv_MaxPool modulewere introducedsimultaneouslyto construct theimprovedYOLOv8 model(YOLOv8-ShuffleNetv2-Conv_MaxPool).Byintegrating the ShuffleNetv2 moduleand the Conv - MaxPol moduleinto the YOLOv8 model,the improved YOLOv8 modelsignificantly enhanced thecomprehensiveperformance ofricepestsanddiseasesdetectionhilemaintainingitslightweightdsign,efectivelyreducingboththefalsedetectionateandthe miseddetectionrate.TheimprovedYOLOv8modeldemonstrated excelentperformanceacrossmultipledatasets,furthervalidating itsrobustnessandgeneralizationabilityAblationstudiesdemonstratedthat,onthcustomdataset,comparedtotheoriginalYOOv8 model,theimproedYOLOv8odelacievedincreasesof3.73percentagepointsinaccuracy3.56percentagepointsiprision 3.78 percentagepointsincall,and3.73percentagepoitsinF-score,hilemaintainingaparametersizeofoly24.80MB.Onthe Coco128 dataset,the improved YOLOv8 model performed the best,with allkey metrics averaging approximately 88.00% ,significantlyoutperformingtheoriginalYOLOv8model,theYOLOv8-ShufleNetv2model,andtheYOLOv8-Con_MaxPolmodel.This model effectively enabled rapid and accurate recognition of rice pests and diseases in practical production environments.
Key words:rice pests and diseases;improved YOLOv8 model; lightweight design; recognition model
水稻是全球重要的粮食作物,其产量直接关系到全球粮食安全。(剩余6713字)