基于改进YOLOv8模型的黄花菜花蕾识别研究

打开文本图片集
静琦,,.基于改进YOLOv8模型的黄花菜花蕾识别研究[J].湖北农业科学,2025,64(7):186-191.
关键词:改进YOLOv8模型;深度学习;黄花菜(HemerocalliscitrinaBaroni);花蕾;识别
中图分类号:TP391 文献标识码:A
文章编号:0439-8114(2025)07-0186-06
DOI:10.14088/j.cnki.issn0439-8114.2025.07.032 开放科学(资源服务)标识码(OSID):I
Research on daylily buds recognition based on an improved YOLOv8 model
HUOJing-qi,CUI Ting-ting,XUE Zhi-lu (School of Mechatronic Engineering,Xi'an Vocational and Technical College,Xi'an 71Oooo,China)
Abstract:A CSPDenseNetbackbone module wasconstructedbydeply integratingCSPNetand DenseNet.This module wasintegrated intotheYOLOv8model,replacingthelasttwostandardconvolutioalmodulesattheendoftebackbonenetwork,resultinginteimproved YOLOv8model(Dense-YOLOv8).Theresults demonstrated thattheDense-YOLOv8modelsuccesfullyidentifiedall maturebudsunderscenarioswithasimplebackgroundandsparsedaylily(Hemerocaliscitrina)Baronibuds.Underscenarioswith asimple backgroudanddensedaylilybuds,theDense-YOLOv8 modelexhibitedexcellentrecognitionperformanceinthebuddetectiontask,altoughsosedetectiosstilouednprocessingtightlyacenttargetsUnderscenariosiholebackground and dense daylily buds,the Dense-YOLOv8 model successfully identified all mature buds.The mAP , FI ,recognition speed, and model size of the Dense-YOLOv8 model were 90.75% ,89 % , 53f/s ,and 217.68 MB,respectively. Compared with the YOLO Δv8 2 model,FasterR-CNNmodelandYOLOv7model,theDense-YOLOv8 modelsignificantly improvedboththeaccuracyandspeedof object detection while streamlining the network structure and reducing parameters.
Key Words: improved YOLOv8 model;deep learning;daylily(Hemerocalis citrina Baroni);bud;recognition
黄花菜(HemerocalliscitrinaBaroni)作为经济作物,对种植环境要求较低,但对采摘条件要求严苛,成熟可食用的黄花菜通常呈淡黄色,花蕾端口处微微开裂时为最佳采摘时机。(剩余9075字)