基于FFRLS-AUKF算法的锂离子电池SOC估计

打开文本图片集
中图分类号:TM912 文献标志码:A 文章编号:2095-2945(2025)28-0070-04
Abstract:AccurateestimationoftheSOCoflithium-ionbateriesisthekeytothesafeandeffcientoperationofelectric vehiclesandenergystoragesystems.Basedonthe Theveninequivalentcircuit model,thispaperusestherecursive leastsquares (FRLS)methodwithforgetingfactortorealizeonlineparameteridentification,andcombinestheadaptiveunscented Kalman filter(AUKF)toestimateSOCinrealtime.InNASAspublicdataset,experimentalresultsshowthatcomparedwithtraditional EKFand UKFalgorithms,AUKFismorerobustundernoiseuncertaintyconditions,andtherot-mean-squareerror(RMSE)and maximum absolute error(MAE)ofSOC estimationare both significantlyreducedand the overallaccuracy ishigher.
Keywords:Lithium-ion battery;SOC;FFRLS;AUKF;estimation
近年来,我国在落实“双碳”自标的背景下,新能源汽车产业得到了高速发展,成为了我国汽车产业转型升级的主要发展方向。(剩余5634字)