基于YOLOv11-DeepSORT改进的遥感图像舰船多目标跟踪算法

打开文本图片集
中图分类号:TP391.41 文献标志码:A 文章编号:2095-2945(2025)28-0023-10
Abstract:Multi-object trackingofshipsinremotesensingimagesplaysacrucialroleinmarinemonitoring,environmental protectionandotherrelatedfelds.Currently,detection-basedmulti-objecttracking(MOT)methodsdominatethefield,where trackingperformanceheavilydependsontheacuracyofthedetectionnetworkToaddresstheisueoflowtrackingperfomance causedbyinsuffcientdetectionaccuracyinexistingalgorithms,thispaperproposesanimprovedYOLOv11objectdetection algorithmbasedontheRMS-FPNfeatureenhancementnetwork.Aditionally,LDConvisintegratedintothebackbonenetwork, andtwospecializedmodulesaredesignedforshipdetectioninremotesensing images:theSSFTandthe SDFT.Comparedtothe original YOLOv11, the improved method achieves an accuracy increase of 11.0% ,arecall improvement of 5.0% ,an mAP50 increase of 10.4% and an mAP50-95 increase of 5.2% .Furthermore,the feature extraction network ofDeepSORTisoptimized by replacing the original ResNet with EfcientNet,leading to a 29.92% improvement in MOTA,a 4.14% increase in IDF1,and a reduction of 53 IDscompared to the baseline.
Keywords: ship detection; ship tracking; YOLOv11; DeepSORT; feature enhanced networ
随着全球化的推进,海洋运输成为国际贸易的重要组成部分,舰船作为海洋活动的主要载体,对其进行有效检测和跟踪显得尤为重要。(剩余12829字)