基于自学习区域选择与边缘聚焦的单目3D检测

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:单目3D检测;自学习区域选择;边缘融合;数据增强;注意力机制中图分类号:TP391.4 文献标志码:A 文章编号:1001-3695(2025)08-041-2552-09doi:10.19734/j.issn.1001-3695.2024.09.0439

Monocular 3D detection based on self-learning region selection and edge focus

Wang Xinwei1, Zhang Youbing , Zhou Kui1 (1.Shring-XJtinbeie yanHubei 44200o,China;2. Jingchu Universityof Technology,JingmenHubei 4480oo,China)

Abstract:This study proposedamonocular3Ddetection algorithmbasedonself-learning regionselectionandedge focusing. UnliketraditionalmethodsthatusedtheentireRolfor3Datributelearning,theproposedalgorithmleveragedadata-driven modeltoself-learnandselectvaluableregions,mitigatingthenegativeinfluenceofirelevantareas.Aditionally,thealgo rithmenhancededgeregions bymodelingthedistributioncharacteristicsof truncatedtargets,improving thefocusonhighfrequencyregions.Furthermore,itintroducedadataaugmentationmethodincorporatingspatialconsistencyconstraints,xtendingthe3Dsamplesetbyaddingspatialconstraints tothecut-and-paste method,thusensuring consistencywith imaging principles.Experimentalresultsonthe KITIdatasetdemonstratethattheproposed methodoutperforms baseline models,witha (204 29.8% improvement in accuracy for truncated targets compared to the baseline model.

Key words:monocular3Ddetection;self-learning region selection;edge fusion;dataaugmentation;atention mechanism

0引言

随着自动驾驶和机器人系统的迅速发展,环境感知成为智能系统的关键环节。(剩余19750字)

试读结束

目录
monitor