基于多智能体深度强化学习的海上风电传感器节点能效优化

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:海上风电;无线传感网络;能效优化;多智能体深度强化学习;自适应噪声策略 中图分类号:TP399;TN926 文献标志码:A 文章编号:1001-3695(2025)08-032-2490-07 doi:10.19734/j.issn.1001-3695.2024.12.0520

Energy efficiency optimization of sensor nodes in offshore wind farm based on multi-agent deep reinforcement learning

JiaLinpengl,WangXiaol†,HeZhiqin¹,WuQinmul,YinYaohua² (1.ColegeofElectricalEnginerin,GuzhouUniersityGuang5O,hina;2.Guangngneeingopraoid POWERCHINA,Guiyang550081,China)

Abstract:Theeficientoperationofofshorewindfarmsreliesonmonitoringdatafrom wirelessensornetworks.Thisstudy identifiedthelackofefectiveenergyeficiencyoptimizationfornodedeploymentandcommunicationinofshorewindfarmscenarios.To address this,this paper proposed anoptimizationscheme usingamulti-agentdepdeterministic policygradient algorithm.Considering limitednodeenergyandofshorecommunicationchalenges,theschemeoptimized sensingandcommunicationstrategiesthroughmulti-agentcollaboration,reducingenergyconsumptionandimprovingnetworkcoverageanddatatrasmision.Adaptive noise,priorized experiencereplay,andatailoredreward function further enhanced learning eficiencyand energy performance.Experiments show that the proposed scheme increases node energy efciency by 26% over DDPG and achieves training speeds 33% and 48% faster than DDQN and SAC algorithms.

Key words:offshore wind farms;wirelesssensor network(WSN));energy eficiencyoptimization;multi-agent deepreinorcement learning;adaptive noise strategy

0 引言

随着全球可再生能源需求的不断增长,海上风电场作为一种清洁、可再生的能源形式,已经成为世界能源结构转型的关键。(剩余19905字)

目录
monitor