融合时空信息与运动信息的骨架行为识别

打开文本图片集
关键词:骨骼行为识别;PoseConv3D;时空注意力;标签平滑损失函数
中图分类号:TP391.41 文献标志码:A 文章编号:1001-3695(2025)08-038-2532-06
doi:10.19734/j. issn. 1001-3695.2024. 10.0483
Skeleton-based action recognition through fusion of spatial-temporal and motion information
WeiWei ,Zheng Cheng,Tang Yuan,Li Chen (SchoolofSofware Engineering,Chengdu Universityof Information Technology,Chengdu 61O225,China)
Abstract:Aimingattheproblemof insuffcientutilizationof spatio-temporaldependentfeaturesandmotioninformation inexisting skeletal behaviorrecognition methods,this paper proposedanimproved model thatcombined motion featuredandspatiotemporalatentionbasedonPoseConv3D.Firstly,itusedthelimbheat mapcomposedof limbs,head,andtrunk asinput to activelyenhancethespatialcorrelationofadjacentkeypoints.Secondly,ithancedtheuseofkeyspatio-temporalfeaturesin thebackboneetworkbyitroducingsati-tempral,hanneldmotionexiationmodules.inalyitplacedeoentropylossfunctionwiththelabelsmothinglossfunctiontoimprovethe model’sgeneralizationabilityThemodelachieved recognition accuracies of 94.4% (X-Sub)and 97.5% (X-View)on the NTU RGB+D dataset,and 90.5% (X-Sub)and 91. 4% (X-View)on theNTU RGB +1 D120 dataset. Experiments prove that combining motion features and spatio-temporal attention with skeletal heat maps as input effectively improves the accuracy of behavior recognition.
Key words:skeletonaction recognition;PoseConv3D;spatio-temporal attention;label smoothing loss function
0 引言
人体行为识别是计算机视觉领域的一个重要分支,其在人机交互、视频监控等方面[1~3]发挥着重要作用。(剩余15482字)