基于跨图特征融合和结构感知注意力的图相似度计算

打开文本图片集
中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)08-010-2320-09
doi:10.19734/j.issn.1001-3695.2025.01.0020
Graph similarity computation based on cross-graph feature fusion and structure-aware attention
Pang Jun 1,2 ,Yan Bingxin’,LinXiaoli1,²,Wang Mengxiang3+ (1.ColegeofomputerScience&Tchnolog,WuhanUniersityofSiece&Techolog,Wuhan43O5,hina;2.HubeiProceKeyL boratoryfelos; jing 100088,China)
Abstract:GED isacommonlyused graph similarity metric function whose exact computation isanNP-hard problem.Therefore,recentlyresearchershave proposed numerousgraph neural network-based graph similaritycomputation methods.The existing methods ignrethecrossgraph interactioninformationbetweentwograph nodesduringfeature extractionandlack the learning of higher-orderrelationships betwee nodes inthe graph.Toaddresstheabove problems,this paperproposedamodel for graph similaritycomputationbasedoncross-graphfeature fusionand structure-aware atention.Firstly,themodel proposed across-graphnodefeature leaing method,which introducedacrossgraphattentiomechanismtoextractthecro-raphinteractioninformationof nodes,andeffectivelyfusedthelocal featuresofnodesandthecross-graphinteraction features.Secondly,he modelproposedastructure-awaremulti-atentionmechanism,whichcombinedthefeatureinformationofnodes withthegraph structural informationtoeficientlycapturethehigher-orderrelationshipsamong nodes.Experimentalesultson three public datasets show that the prediction accuracy of the CFSA model is improved by 4.8% ,5. 1% ,and 15.8% , respectively,compared tothe existing models,and hasadvantages inalarge numberof performance metrics,which proves the effectiveness and efficiency of CFSA for the GED prediction task.
Key words: graph edit distance(GED); graph similarity;graph neural network(GNN) ; graph embedding learning
0 引言
图数据因其独特的表达能力,能够有效地表示实体及实体之间的复杂关系,因此在推荐系统[1、社交网络分析和生物信息学[3]等领域得到广泛应用。(剩余19476字)