基于污点分析的移动端深度学习模型泄露自动分析方法

打开文本图片集
关键词:动态分析;污点分析;深度学习;Android应用
中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)08-025-2437-09
doi:10.19734/j.issn.1001-3695.2024.10.0501
Automatic method to analyze deep-learning model leakage on mobile systems using taint analysis
Zhu Wentian,Lin Jingqiang† (SchoolofCyberScience&Technology,UniversityofScience&TechnologyofChina,Hefei230O27,China)
Abstract:Toanalyze dep-learning modelleakageonmobilesystems,existing methods require todynamicallyrun mobile applicationsand manually trigerdeep-learningfunctions,whichareunstableand needalotof manualparticipations,limiting the widespread useof such analysis methods.To automatically analyze more deep-learing models on mobile systems,this paper proposed an automatic method to analyze deep-learning modelleakage on mobiledevices using taint analysis.This method combined keyword matching and entropy evaluation to extract modelfiles inmobile applications,usedataint-analysis method basedonsimulated execution totrackthefunctionaddress of modeldecryption,andfinallcalledthedecryption functionto obtaintheplaintextmodel.Basedonthisdesign,thispaperimplementedanautomatedanalysis toolcaledModelDec.The analysis esults on mainstream APP stores show thatthe model leakage detectionrateand theanalysis speed are better than existing methods,which demonstrate the effectiveness of the proposed method.
Key words:dynamic analysis; taint analysis;deep learning model;Android applications
0 引言
随着人工智能技术的飞速发展和广泛应用,深度学习算法正逐渐被集成到智能手机等移动设备上。(剩余24436字)