基于边更新与多头交互融合Transformer的车辆轨迹预测方法

打开文本图片集
关键词:车辆轨迹预测;深度学习;Transformer;多头注意力机制;时空特征融合;智能驾驶中图分类号:TP13 文献标志码:A 文章编号:1001-3695(2025)08-014-2348-07doi:10.19734/j. issn. 1001-3695.2025.01.0017
Vehicles trajectory prediction approach based on Transformer with edge update and multi-head attention interactive fusion
Sun Yinga†,Wu Yanyongʰ,Ding Deruib,Zhang Jiankunb (a.BusinessSolholfpticalElecrical&ompuerEgineig,Uiesitfgifoice&echolog ,China)
Abstract:Thetaskofvehicletrajectorypredictionforautonomous driving needs tofullyconsider therelationship betweenthe traficagentsandtheenvironment.Addresingthelimitationsofexistingapproachesatthelevelofheterogeneousfeaturenteractionand improving prediction accuracy,the paper proposedavehicle trajectoryprediction approach named EMATNet with edgeupdatingandmulti-headattention interactivefusionTransformer.Firstly,theapproach encodedand embeddedthe historicalspatio-temporal informationof theagentsandthetransportationenvironment.Then,theapproachusedtheproposedtwostageinteractionnetworkofedgeupdatingandmulti-atentioninteraction fusion Transformerforfeature interaction.The introducedsymmetricpositionalembeddingandvehicle-roadrelationshipinteractioncouldefectivelyenhancetheglobalinformation perceptionandspatio-temporalrelationshipcapturingcapability.Finalythisapproachusedtwostageoptimizationdecoding to ensurethe acuracyand reasonablenessofthe predictionresults.The proposedappoachvalidatedonArgoverseland Argoverse2 motion prediction datasets,and visualizedandanalyzed the predictionresults.Theresults show that EMATNetoutperforms similarapproaches inthethre performance metricsofminFDE,minADEandMR,andiscapableforthe taskof vehicle trajectory prediction in complex traffic environments.
Keywords:vehicletrajectoryprediction;deeplearning;Transformer;multi-headatentionmechanism;spatio-temporalfeature integration; intelligent driving
0 引言
近年来,智能驾驶技术正吸引着学术界和工业界越来越多的关注,其在交通领域中有着越来越广泛的应用。(剩余17833字)