融合正交学习和动态平衡的麻雀搜索算法及应用

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:麻雀搜索算法;正交学习;动态平衡;多阈值图像分割

中图分类号:TP301 文献标志码:A 文章编号:1001-3695(2025)08-020-2398-10

doi:10.19734/j. issn.1001-3695.2024.11.0526

Sparrow search algorithm integrating orthogonal learning and dynamic equilibrium and its application

He Hongyu¹,Pan Jiawen²,Qian Qian1† (1.Facultyofae&iongUesite&ngin;f Information& Electrical Enginering,China Agricultural University,Beijing1ooo83,China)

Abstract:Aiming atthe shortcomingsofthe sparrowsearch algorithm,suchasslowconvergencespeedandunbalancedsearch ability,this paper proposedasparrowsearch algorithm that integratedorthogonal learninganddynamicbalance(SSAOD). Firstly,the SAODintroducedanorthogonalleaing strategytostrengthentheinformationtransmisionbetweenindividuals andimprove theconvergencespeedof thealgorithm.Then,thealgorithmadoptedadynamicbalancestrategytoenhance he globalexplorationabilityofthealgorithmintheearlyiterationandthelocalexploitationabilityinthelateriteration,soasto balancethetwosearchbehaviors.SSAODhadthebestoveralloptimizationability,betterstability,fasterconvergencespeed andhigheraccuracyonthe IEEECEC20 testfunctions.Ialsoappiedtheproposed algorithmtothemulti-threshold image segmentation problem.Asaresult,theimage details wereclearerandtheinformationwas more abundant,compared with the results of otheralgorithms.Theexperimentalresultsshowthatthe proposed SSAODnotonlyhasbeternumericaloptimization ability,but also has beter ability to solve practical problems.

KeyWords:sparrow search algorithm;orthogonal learning;dynamic balance;multi-threshold image segmentation

0 引言

全局优化问题广泛存在于科学研究、工程实践和经济金融中[1],传统优化算法无法在有限的时间内快速解决离散,目标函数不可导,以及搜索空间复杂的优化问题[2.3]。(剩余15207字)

目录
monitor