生物启发的运动人群瓶颈效应感知视觉神经网络

打开文本图片集
关键词:人群异常活动分析;人群瓶颈效应;LGMD;蝗虫视觉神经系统;神经尖峰响应;智能视频监控中图分类号:TP183 文献标志码:A 文章编号:1001-3695(2025)08-004-2274-09doi:10.19734/j.issn.1001-3695.2025.01.0015
Bio-inspired visual neural network for perceiving moving crowd bottleneck effect
Lu Xianpeia,b,Hu Bina,b.ct(.StateKeybooub,lofueSe&lellceehsUniversity,Guiyang ,China)
Abstract:Thecrowdbotteneck effct inlarge-scaleeventsserves asan important precursortodisasters suchascrowdingand stampedes.However,therearefewstudiesoncomputationalmodelsforcrowdbotleneckeffctdetection.Duetotherandomnessof this efectandthecomplexityof therowdstate,thetraditionalcomputationalmodelsarenotidealfordetection.Toaddressthis issue,this paper proposed a crowdbotteneck efect perceiving visual neuralnetwork(CBEPVNN),drawing onhe neural structure characteristicsofthe locust visual systemand therisk perceiving mechanismoflocustLGMD.The model simulatedthe visualinformationprocesingcharacteristicsoflocustsandmammals,integratedvisualmovementinformationfromumanactivities,andemployed the danger perception mechanism of LGMD neurons to establish a peak threshold mechanism. Thismechanism tuned the neural network output toperceive thebotleneck efect ofmoving crowd invisual scenes.Experimentalresultsdemonstrate that CBEPVNNeffctively perceives the movingcrowdbotteneck effct invideosequences andproduces a strong preference response.This work elucidates the mechanism of crowd dynamic visual information procesing inspiredbybiologicalopticneural mechanisms,providing newideasand methodsforabnormal crowdactivitydetectionandbehavior analysis in intelligent video surveillance.
Key words:analysis of abnormal crowdactivity;crowd botteneck effct;LGMD(lobula giant movement detector);visual nervous system of locust;neural peak response;intelligent video surveillance
0 引言
Solmaz等人[1]将现实世界中常见的特定人群行为分为瓶颈、源头、车道、拱门和阻塞五类。(剩余23366字)