智能物联网中高效安全的自适应量化联邦学习

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP309 文献标志码:A 文章编号:1001-3695(2025)08-034-2503-08

doi:10.19734/j.issn.1001-3695.2024.11.0504

Efficient and secure adaptive quantization federated learning in AIoT

Ma Haiyinga,Shen Jinyua,Yang Tianlinga,Qiu Jiana,Wang Zhanjunbt (a.SchooloficellgeeoueclfaStatics,oUesitgJ1 China)

Abstract:Forthe problemofparticipants’privateleakageonthemodelparameters intheexistingadaptivequantizationfederatedlearning schemes,this paper proposedan eficientandsecureadaptivequantization federated learning scheme suitable for artificialinteligenceof things(AIoT).Thisschemeutilizedadaptivequantization technologytoreducethecommunication overhead forparticipants.Iconstructedascureagregationprotocolintwoaggregationserverstoprotecttheprivacyoflocal modelparametersbycombiningtheDifie-Helmankeyexchangeprotocol,secretsharingshemesandoblivious trasferprotocols.This paper proved the proposed scheme was secureunder reasonable assumptions.The experimental results show that the scheme notonlycanachieveaglobal modelwithhighaccuracy,butalsocansignificantlyreducecommunicationoverheadand computationcosts forprotectingparticipants’privacy.Thisscheme issuitableforresource-constrained,suchaslightweightIT devices in AIoT.

Key Words:federatedlearning(FL);privacyprotection;adaptivequantization;secret sharing;oblivious transfer protocol

0 引言

智能物联网(AIoT)[]利用人工智能技术分析物联网数据,使得物联网设备具备感知与识别能力,促使产业升级和体验优化,实现万物智能互联。(剩余21318字)

目录
monitor