基于时间块动态图神经网络的序列推荐方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)08-009-2312-08

doi:10.19734/j.issn.1001-3695.2024.12.0518

Time-block-based dynamic graph neural network for sequential recommendation

Peng Zihang¹, Zhang Quangui2†,Jin Haibo1,Liu Yixin1,Qi Yuxin1 (1.SchoolofreclUsityL;hlfc& ChongqingUniversity ofArts& Sciences,Chongqing 40216O,China)

Abstract:Dynamicgraph-basedsequentialrecommendationisacurentresearchhotspotintherecommendationsystemdo main.Existing methods typicallconstructed dynamicgraphsateach timestampof user-item interaction sequences,which strugled toaddress noisecaused byocasionaluser behaviors andfailed to effctivelycaptureusers’periodic preferences.To address thesechallenges,thispaper proposedaTBDGNNforsequentialrecommendation.The methodfirstlydivided temporal sequences intomultipletimeblocksbasedonthedistributionofuser-iteminteraction historydata.Thenitconstructeddyamic graphswithineachtimeblocktomodeltemporalevolutionofuserbehaviors.Aditionally,itdesignedatime-block-levelgraph neural network framework tomitigate theimpactofocasional interactions(e.g.,usermisoperations)andcaptureusers’periodicbehaviors through time-blockpartitioning.ExperimentalresultsdemonstratethatTBDGNNsignificantlyoutperformsthe DGEL baseline on core metrics in datasets including MovieLens,achieving a maximum improvement of 8.7% in hit@10 . The findings validate the model's efectiveness in dynamic recommendation and periodic behavior modeling.

Key Words:sequential recommendation;dynamic graph neural network;time block;periodic preferences

0 引言

传统的推荐系统主要依赖于用户的静态偏好与物品间的相似性,通过协同过滤等手段为用户提供个性化推荐[1,2]。(剩余20349字)

目录
monitor