DRO框架下不平衡分类损失函数重加权优化

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:不平衡分类;数据标签不确定性;加权标签分布稳健损失

中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)08-024-2428-09

doi:10.19734/j. issn.1001-3695.2024.10.0480

Optimization of re-weighted loss function for imbalanced classification under DRO framework

Li Jiajing’,Lin Geng²+(1.Schoolofttics&istcs,jnalUiersitzo57in;2holopuer>Uversity,Fuzhou ,China)

Abstract:The skewed distributionofclassesoftenleads clasification models toneglecttheimportanceof minorityclasses,favoringthe majorityones,whichcanrender models incapableof accurate classification in multi-classimbalancedtasks.Existingresearch focusesonthe studyof data balancing strategies andloss function tuning,ignoring the problemofuncertaintyin labelinginformation,werelabelsmaybewongornoisyTheuncertaintymakesclasifiercorrectclasificationmorechallenging.Thispaperproposedanewlossfunction,calledweightedlabeldistributionallyrobustKullback-Leibler,whichoptimisedthepredictivedistributionundertheworst-casescenario,toaddressthechangesanduncertaintiesindatadistributionfor theimbalanced clasification task.Basedonadistributionallyrobust framework,thisapproach merged prior informationand label weights tofocus onminorityclasss andadapt to labeluncertainty.Inaddition,this paper proposedasimulation method forimbalanceddatasets thatused MonteCarlosimulations toprovideamorecomprehensiveevaluationof theperformanceof eachlossfunctionunderdiferent classesandatdifferent levelsofquantitativevariance.Experimentalresultsonsimulated, UCI and Kagledatasetsshowthatthe proposed method performs wellwith imbalanced dataandachievesamoderate improvement in top-k accuracy, F1 -scores,precision and recall.

Key words:multi-classimbalanced task;data label uncertainty;weighted labeled distribution robust loss

0 引言

在现实中,数据集往往呈现出一种倾斜的不平衡状态,即某些类别的样本数量会远远多于其他类别。(剩余20929字)

目录
monitor