面向稠密区域的本地化差分隐私自适应空间分解

打开文本图片集
关键词:本地化差分隐私;自适应空间分解;自适应网格划分;随机响应;空间范围查询 中图分类号:TP309.2 文献标志码:A 文章编号:1001-3695(2025)08-036-2518-07 doi:10.19734/j.issn.1001-3695.2024.11.0505
Adaptive spatial decomposition based on localized differential privacy for dense regions
Ji Bo,Li Xiaohui†,JiaXu (SchoolofElectronics&Information Enginering,Liaoning UniversityofTechnology,JinzhouLiaoning21oo,China)
Abstract:Toaddress theisues oflowqueryaccuracyandeficiencyin processng spatialdatausing conventionaluniform gridmethodsandadaptive griddecompositionmethods,,this paperdevelopedanadaptive spatialdecompositionalgorithmbased onlocal diffrential privacy(LDP-ASDT).LDP-ASDTperformed spatial decomposition hierarchicallyusing agrouping strategyto separate denseandsparseregions.For dense regions,it further adaptively decomposed them bysetting appropriate thresholds using aquadtre.Itperturbedthe decompositionresults using one-dimensionalcoding toachieve privacy protection. Theoreticalanalysisdemonstratesthatthisalgorithmsatisfieslocalizeddiferentialprivacy.Experimentsconductedonthree real datasetsshowthatthequeryacuracyandoperationaleficiencyofthisalgorithmaresuperiortothoseofGT-R,PrivAG, KDRQ,and ASDQT algorithms.Specificall,compared to the ASDQT algorithm,LDP-ASDT algorithm doubles thequery accuracy and increases the operational rate by 17% in dense regions.
Key words:localdiferential privacy;adaptivespatialdecomposition;adaptivegriddecomposition;randomizedresponse; spatial range query
0 引言
大数据时代,随着信息技术的迅猛发展和智能设备的广泛普及,空间数据因其巨大的潜在价值而备受关注。(剩余16041字)