基于水波传播特性的半监督密度聚类算法

打开文本图片集
中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)08-011-2329-06
doi:10.19734/j. issn.1001-3695.2025.01.0016
Semi-supervised density clustering algorithm based on water wave propagation characteristics
Feng Yanchaola,Wang Jiela,LiYatinglb,Cai Jianghuila.2,Yang Haifenglat (1..ScolfoerSece&TohlofectinEgng,nUiesifSee & TaiyuanO30024,China;2.ScholofComputercience&Technology,North UniversityofChina,TaiyuanO3O51China)
Abstract:Semi-superviseddensityclusteringoptimizes theclustering performance by integrating supervised informationand densityfeatures.However,whenthedataisunevenlydistributed,thetraditionalsemi-superviseddensityclusteringalgorithm isoftendificulttocapturelocaldensitydiferencesduetotheglobaldensitythresholdsettingandinsufcientuseofcostraint information,resulting inlimitedrecognitionabilityofsparseregionalclusters.Toddressthischallnge,thispaperproposed a semi-upervised densityclustering algorithm based on water wave propagation characteristics(SDR).Inspiredbythe“constantwavecenter”and“amplitudeattenuation”characteristicsof water waves,SDR simulatedthe tendencyof clustercenter stabilityanddensitydecreasingfromcentertoboundary,andidentifiesinitialsubclustersbylocaldensitydiferences.Thealgorithmfurther utilized the neighborinfluencetoassigntheremainingpoints tothesubclusters,and dynamicallmerged these subelustersbasedonthelabelatachmentdegreeTheexperimentalresultson5syntheticdatasetsand7realdatasetsconfim the validity of SDR algorithm in sparse region clustering task.
KeyWords:semi-supervised learning;density-based clustering;water wave propagation;constrained optimizatior
0 引言
聚类是一种数据分析技术,它将数据集中的样本划分为若干个簇,确保同一簇内的样本具有较高的相似性,而不同簇之间的样本相似性较低,从而揭示数据集的内在结构和模式。(剩余15576字)