对比学习增强的多行为超图神经网络推荐模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:推荐系统;多行为推荐;图神经网络;超图;对比学习;自监督学习中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)08-008-2304-08doi:10.19734/j.issn.1001-3695.2024.12.0528

Multi-behavior hypergraph neural network model enhanced with contrastive learning

WangGuang,Li Jiaxin† (CollegeofSoftware,Liaoning Technical University,Huludao Liaoning 1251O5,China)

Abstract:Multi-behaviorrecommendation(MBR)systemsareincreasinglyimportantininternetplatformsbutface twocriticallimitations:a)failuretocharacterizeusers’complexpreferencesunderdiversebehaviors,b)dificultymodeling interbehaviorrelationships.This studyproposedamulti-behaviorhypergraph neural networkmodel enhanced withcontrastielearning(MBHCL)toaddress these issues.The methodconstructed user-item hypergraphsformulti-behavior interactions,capturingusers’multi-dimensionalpreferences.Itdesigned threecontrastivetaskstointegratesingle-behaviorrepresentations throughcommonality-diferencemodeling,obtainingoptimizedembeddingstoalleviatecold-startanddatasparsityproblems. Experimentsonfourreal-worlddatasets(Tmall,BeiBei,Kuairand,Yelp)demonstrateMBHCL’sefectiveness.Themodel achieved minimum 4.8% HIT and NDCG improvements on Tmall and BeiBei datasets,and 3.6% enhancements on Kuairand andYelpdatasets.Ablationtestsverifiedallcomponents’contributions,withcold-startrecommendationsshowingsignificant performance gains.

Keywords:recommendation system;multi-behaviorrecommendation;graphneuralnetwork;hypergraph;contrastive learning;self-supervised learning

0引言

在信息爆炸的时代背景下,推荐系统作为应对信息过载、提升用户体验的关键工具,其发展受到了广泛关注。(剩余17817字)

目录
monitor