基于辅助行为去噪的多行为推荐

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)08-018-2383-07

doi:10.19734/j.issn.1001-3695.2025.01.0004

Multi behavior recommendation based on auxiliary behavior denoising

ChenWenhao,Chen Yuan ,Zhu Xiaei ( 4OOo54,China)

Abstract:Multi-behaviorrecommendation(MBR)systemsanalyzeuser preferences throughauxiliary behaviors toaleviate data sparsityand enhancerecommendationaccuracy.However,previous approaches thatused randomly initialized userand itemembeddingsfailed toprovidesufficientinformationvalueandignoredthenoiseinbehaviorembeddingagregationaswell asthenoiseinauxiliarybehaviorinteractionsequences.Toovercome theselimitations,thiswork introducedtheauxiliarybehavior denoising MBR model(ABD-MBR).The framework firstlypre-trainedusersand items togeneratemeaningful initial embedings.Then itdesigneda projectionagregation module to mapauxiliarybhaviorsto thetargetbehavior space,minimizing noise interference during embedding fusion.Additionally,the model implemented bot- ∇⋅k and top ∇⋅k sampling modules to refineauxiliarybehavirinteractionsequences,fectivelysuppreingsequence-levelnoise.Finally,themodelemploydmultitask learning tooptimizeitsperformance.Experimentsonthreepubliclyavailabledatasets showthat,comparedtoMB-HGCN, the model achieves an average improvement 10.2% in HR@10 and 13.4% in NDCG@10 ,demonstrating its effectiveness. Key words:multi-behaviorrecommendation;auxiliary behavior;pre-training;embedded projection;multi-task learning

0 引言

随着互联网的快速发展,大量的物品信息呈指数级增加,这使得人们要花费大量时间和精力来对这些信息进行管理。(剩余17280字)

目录
monitor