基于脉冲神经元膜电位增量的数据分布统计量及批归一化

打开文本图片集
关键词:脉冲神经网络;批归一化;脉冲时间依赖性;脉冲神经网络训练算法中图分类号:TP183 文献标志码:A 文章编号:1001-3695(2025)08-013-2341-07doi:10.19734/j.issn.1001-3695.2024.12.0529
Data distribution statistics and batch normalization based on membrane potential increments of spiking neurons
LiWeiqi¹,ChenYunhual†,ChenPinghua1,Zhu Chunjia² (1.SchoolofComputerSience&Tchologyuangdong UniersityfTchologyuangzhou5o,hina;2.ChinaSibldingR search&DesignCenter,NeijiangSichuan641199,China)
Abstract:SNN has garnered significant atention due to theirlow power consumptionand high-speedcomputation,stemming fromtheiravoidanceof multiplicationoperations.However,substantial challnges remainin theareas of training algorithms, hyperparameter tuning,andarchitecture designforSNN.Adressng the limitations of existing BNmethods inefectively handling temporal dependencies,thispaperanalyzed thepropagationof membrane potential incrementsacrosstimesteps.The proposed method computed the spatio-temporal accumulationof membrane potential increments step-by-stepas statistical measuresfornormalizingdataateachtimestep.Furthermore,itintroducedanexponentiallweighted moving average tocompute thespatio-temporalaccumulationofmembranepotentialincrements,foringaspatio-temporalatenuationcumulativebatch normalization(STBN)method.Experimentalresultsonthe CIFAR-10,CIFAR-10O,and CIFAR10-DVS datasets demonstrate that the proposed method significantly improves network clasificationaccuracyandreduces latency.Notably,onthe CIFAR100 dataset, the method achieves an accuracy of 76.30% using only two time steps, representing a 3.43% improvement over the previous best algorithm for similar models.
Key words:spiking neural network(SNN);batch normalization(BN);temporal dependencies inspiking;training algo rithmsfor spikingneural network
0 引言
由脑科学启发设计出的脉冲神经网络(SNN)[1~3]作为第三代人工神经网络,有着更好的生物解释性。(剩余17494字)