残差混合注意力与自适应特征融合的脑肿瘤分割

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:脑肿瘤分割;自适应特征融合;残差混合注意力;双动态卷积增强中图分类号:TP391.41 文献标志码:A 文章编号:1001-3695(2025)08-037-2525-07doi:10.19734/j.issn.1001-3695.2024.10.0432

Brin tumor segmenttion sed on residul mixed ttention nd dptive feture fusion

Wu Jinxua,b,WuYuna,bt (a.StateKeyLaboratoryofublicBigData,b.ColegeofomputerSience&Technology,GuzhouUniersty,Guiyang550ina)

Abstract:Theautomatedsegmentationofbrain tumorimagesiscrucialintheauxiliarydiagnosisandtreatmentof brain tumors.This paper proposed abrain tumor segmentation method RAC-Net,which combined aresidual mixedattention mechanismandadaptivefeaturefusion toaddress theproblemsofcomplexandvariablelesions inbrain tumorimages,as well as blurredboundariesbetweenlesionsandthebackgroud.FirstlyDDCEmoduleenhancedfeatureextractionflexibilityndimprovedthe adaptabilityofthe model.Then,RMA moduleextractedbothglobalandlocal features fromtheimage.Finally, AF2Mfused deepand shalowfeatures inthe decoding path,thereby enriching thefeature representation.Experiments on the public datasetsBraTS2019 and BraTS2O21andcros-dataset validation with BraTS2O23showthatRAC-Netoutperformsmost existingsegmentationmethodsacross varousmetrics,demonstrating itspotentialforasistingintediagosisofclinicalyrelevant brain tumor diseases.

Key words:brain tumor segmentation;adaptive feature fusion;residual mixed atention;dual dynamic convolution enhancement

0 引言

脑胶质瘤是一种源自脑内神经胶质细胞的肿瘤,是最常见的原发性颅脑恶性肿瘤,约占据所有原发性中枢神经系统肿瘤的 40%~60% 。(剩余19982字)

目录
monitor