基于域内和域间元路径聚合的跨域推荐方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:跨域推荐;冷启动问题;图神经网络;异构信息网络;元路径中图分类号:TP311 文献标志码:A 文章编号:1001-3695(2025)08-017-2374-09doi:10.19734/j.issn.1001-3695.2025.01.0022

Cross-domain recommendation method based on aggregation of intra-domain and inter-domain meta-paths

Xu Jia 1,2 ,Wang Xin³,Wang Yanqiu4†,Wu Haiwei³,Lyu Pin1 (1.CyberspaceuteofdadlogouUesityaga;ateKybotoyse curityDefesedsof Inforationii;ofceleit Guangdong 518055,China)

Abstract:Cros-domainrecommendation technologyeffectivelyenhances therecommendation performanceof the targetdomain bydeeplyminingandutilizing useful informationfrom otherdomains,providing anefectivesolution tousercold-start problem.However,existingcross-domainrecommendationmethods havelimitations,failing tofinelyexpandimplicitrelationshipsandneglectingpotentialredundantinformationinembeddingvectors,whichrestrictstheperformanceofcross-domain recommendationsystems.Toaddressthis,this paper introduced theintra-domainandinter-domainmeta-pathsaggregation basedcro-domainrecommendationmethod(IMCDR).Specifically,IMCDR firstlycalculated thefine-grainedsemanticembedding of entities across multiple fields,thereby efectively extending user-userand item-itemrelations.Then,IMCDR generated privatefeaturesandshared featuresforeach nodebasedonintra-domainmeta-pathsand inter-domain meta-paths respectively,andefectivelyintegratedtemtoobainbeterqualityembeddngvectors.Experimentalresultsacrosstecossdomain recommendation tasksdemonstrate that IMCDR significantlyoutperforms in terms of precision andoverallperformance.

Keywords:cross-domainrecommendation;usercold-start problem;graph neural network;heterogeneous informationnetwork;meta-path

0 引言

在快速变革的数字化时代,各种应用不断涌现,海量产品、新闻和视频等内容不断发布和更新,网络信息和数据呈爆炸式增长,互联网用户难以在信息海洋中找到真正有价值和感兴趣的内容[1,2]。(剩余24084字)

目录
monitor