基于稳定扩散与自适应增强技术的服装模特图像生成方法中

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:稳定扩散;图像生成;自适应增强;模型微调;多模态评估 中图分类号:TP181 文献标志码:A 文章编号:1001-3695(2025)08-003-2267-07 doi:10.19734/j.issn.1001-3695.2025.01.0008

Method for generating clothing model images based on stable diffusion and adaptive enhancement techniques

Liu Dawei 1,2 ,Yu Bihui 1,2‡ ,Shi Jiawei1,2,Wei Jingxuan 1,2 ,Shi Huiyang2,³,Jin Hexuan , Sun Linzhuang1,2 (1.Shenyanguteofomputinghlg,CnseAcdefSiecs,hyag8,ha;2.UniersitofCinsedf Sciences,Bjing4,hin;3Sholofompuercience&Techog,UniersityfCneseAdeyfSiences,Beiin10 China)

Abstract:Withtheadvancementofcomputervisionand generativemodels,,image generationtechnologyhas made significant strides,particularlyine-commerceproductdisplays,enhancinguserinteraction.Realisticclothing modelgenerationhas becomeaninnovativeapplication,deeplyintegratinggenerativetechnologywithe-commerce.However,challngesremain,especiallyingenerating high-quality,realisticclothing imagesthatcapturedetails,texture,andconsistency.Currentmodelsoftenstrugglewithaccuratelyrepresentingthefactualconsistencyofclothingandmaintaining naturalnessandcoherencecompared toreal images.To improvetheperformanceofclothing model generation technologyine-commerceapplications,this studypresentedLoRA-DAE,animprovedstabledifusion generative modelthatintegratedLoRAforoptimizedweightadjustment in atentionand convolutionlayers.Additionall,itaddedanadaptiveenhancement module tothegenerationprocess, dynamicallyadjusting textureanddetail distribution,adressing issues liketexture blurrngandedge distortion.Experments show thatLoRA-DAEoutperforms mainstream methods ontheFashion Mannequindataset,achieving notableimprovements in perceived quality(user evaluation),quantitative metrics(FID,IS,PSNR,SSIM),and multi-modal large model VQA evaluation.

Key words:stable difusion;image generation;adaptive enhancement;model fine-tuning;multimodal evaluation

0 引言

随着数字化技术的快速发展,时尚行业正迎来深刻的变革,传统的服装设计、展示和销售方式逐步被人工智能等新兴技术所革新[1]。(剩余18415字)

目录
monitor