基于全子集回归和BP神经网络的信阳稻瘟病预测模型构建

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:稻瘟病;发生面积;全子集回归;BP神经网络算法;预测模型;构建;信阳市

中图分类号: S435.111.4+1 ;S431.1 文献标识码:A

文章编号:0439-8114(2025)12-0104-06

DOI:10.14088/j.cnki.issn0439-8114.2025.12.018 开放科学(资源服务)标识码(OSID):回

Construction of a prediction model for Xinyang rice blast based on all subsets regression and BP neural network

HU Xue-min 1 ,ZHU Zhi-gang²,JIANG Zhao-qin²,JI Xin1,CHENLi-jun !1 ,SHI Hong-zhongl

College of Agronomy,Xinyang Agricultureand Forestry University,Xinyang 4640oo,Henan,China; 2.Xinyang Agricultural Technology Service Center,Xinyang 464ooo,Henan,China)

Abstract:UsingmeteorologicaldatafromtheXinyangCitybetween2O04and2O21(excluding2020),includingairtemperature,relativehumidity,precipitation,andsunsineduration,fivekefactorsinfluencingriceblastepidemicsereidentiedtroughcoelationanalysis.Thesefactorswere:TheminimumrelativehumidityinlateJune,theminimumrelativehumidityinearlyMaytheminimumtemperatureinearly May,thesunshine duration inmid-June,andthecumulativerainfallinearlyAugust.Bothall-subsetregresionandBPneuralnetworkalgorithms wereemployedtopredicttheincidenceareaofriceblastintheXinyang City.Theresults showed that all-subset regresson model 1 and model 2 achieved back-testing accuracies of 92.49% and 94.43% ,respectively,for the 2004-2021 rice blast incidence area,andboth yieldeda prediction accuracyof 79.68% for the years 2022 and 2O23.Incomparison, BP neural network models 1 and model 2 achieved back-testing accuracies of 82.72% and 83.55% ,respectively,for the 2004——2021 period,and prediction accuracies of 98.06 % and 95.49% for 2022 and 2O23.Based on these results,BP neural network model 1 was identifiedastheoptialpredictionmodel.Usingthismodel,thepredictedincidenceareaoficeblastinXinyangCityfor24was 26 500 hectares( hm2 )

KeyWords:riceblast;incidencearea;allsubsetregresion;BPneuralnetworkalgorithm;predictionmodel;construction;Xinyang City

水稻作为全球重要的粮食作物,其高产和稳产直接关系国民经济的稳定和发展。(剩余8703字)

目录
monitor
客服机器人