基于改进YOLOv8s-Seg模型的番茄成熟度检测

打开文本图片集
关键词:改进YOLOv8s-Seg模型;番茄(SolanumlycopersicumL.);成熟度;检测
中图分类号:S126;TP391.41 文献标识码:A
文章编号:0439-8114(2025)06-0178-07
DOI:10.14088/j.cnki.issn0439-8114.2025.06.030 开放科学(资源服务)标识码(OSID):
Maturity detection of tomato based on the improved YOLOv8s-Seg model
YANG Shuang,ZHOU Zhong-lin (Economics and Management School,Yangtze University,Jingzhou 434023,Hubei, China)
Abstract:Toachievereal-timedetectionof tomatoatdiferentmaturitystages,animprovedYOLOv8s-Seg model wasproposed to meetthe precisionmanagementrequirementsof modernagriculture.Byenhancing theneck moduleof theimprovedYOLOv8s-Seg model,a1×1SimConvlayerwasaddedbeforeeachupsamplingoperation,andtheremainingconventionalconvolutionsintheneck werereplacedwith 3×3 SimConvlayers,significantlyimprovingfeaturefusioncapability.Theresultsshowed thattheimprovedYOLOv8s-Seg model achieved segmentation precision rates of 92.7% , 92.3% ,and 89.9% for mature,semi-mature,and immature tomatoes,respectively.Compared withtheoriginalYOLOv8s-Seg model,theimprovedYOLOv8s-Segmodeldemonstrated increasesof 1.6,0.4,1.0,and 2.4 percentage points in precision,recall,F1-score,and ,respectively. The improved YOLOv8s-Seg model outperformed YOLOv8s-Seg,YOLOv5s-Seg,YOLOv7-Seg,and Mask R-CNN models in precision,recal,F1-score,and mAP@0.5.Theinference timeoftheimprovedYOLOv8s-Segmodelwas3.5ms,showingaslightincreasecomparedtoYOLOv5s-Seg andYOLOv8s-Seg models,butremainedsignificantlylowerthanYOLOv7-Segand Mask R-CNNmodels.Theimproved YOLOv8sSegmodelexhibitedsuperiorperformanceintomatomaturitysegmentationundercomplexenvironments,achievinghigh precision across scenarios involving leaf occlusion,fruit overlap,lighting variations,and viewpoint changes.
Key words: improved YOLOv8s-Seg model; tomato(Solanum lycopersicum L.);maturity;detection
在复杂背景下准确分割不同成熟度的番茄对于有效采摘、水果监测及评估番茄质量至关重要。(剩余9945字)