基于改进YOL0v11的籽棉异纤智能分选系统设计

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:籽棉异纤检测;智能分选系统;深度学习;注意力机制;多尺度特征融合中图分类号:S226.5;TP23 文献标识码:A 文章编号:2095-5553(2025)12-0162-09

Abstract:Toenhance thelevelofitellgence incotton processingand improve productquality,anintelligentforeign fiber sorting system for sed coton was designed based on an improved YOLOvl1 model.The system acquired images in real timeusinganindustrialcamera,andacombinationofanindustrialcomputerandareal-timecontrolboardwasemployed toprocess thedataanddrivehigh-speedelectromagneticvalves forforeignfiberremoval.Intermsofforeignfiber detection,gray-levelhistogramanalysiscombinedwiththresholdsegmentationwasfirstappliedtorapidlyidentifyforeign fibers with significantcolordiferences from sed cottn.However,since plastic film fragments exhibited small color diferencesfromseedcotton,andcottnhullsandstalkswereoftenconfusedwithdark-coloredforeignfibers,threshold segmentation frequentlymisclasifiedhullsandstalksandfailedtodistinguish plasticflmefectively.Toaddress these isues,an improved YOLOvll model was introduced torecognize plastic film,coton hull,and stalks.The improvementsincludedtheintegrationofaBRAatentionmechanismintothebackbonenetworktoenhancesmall-object detectioncapability,the adoptionof BiFPN in the neck structure for multi-scale feature fusion,and thereplacementof the originallossfunction with the DIoUlosstoacelerateconvergence.Experimentalresultsdemonstrated thattheimproved YOLOvll model achieved a detection precision of 94.2% ,representing an increase of 4.5% over the original model.Furthermore,multiple tests conducted under actual production conditions showed that the system achieved an average impurityremoval rateof 91.1% ,therebyverifying its stabilityand application value in real-world scenarios.

Keywors:seed cotton foreign fiber detection;intellgent sorting system;deep learning;atention mechanism;multi-scale feature fusion

0 引言

棉花对国家经济发展和人民生活极其重要,为我国农业现代化提供物质基础。(剩余13961字)

目录
monitor
客服机器人