基于改进ResNet34的水稻叶片病害识别模型

打开文本图片集
关键词:水稻叶片病害;深度可分离卷积层;非局部注意力机制;深度学习;卷积神经网络中图分类号:S511;S435.11;TP391.4 文献标识码:A 文章编号:2095-5553(2025)12-0086-08
Abstract:Riceleafdiseasescanseriouslyafectriceyield,soitisvery importanttoidentifyriceleafdiseasestimelyand accurately.Convolutionalneuralnetworksperformwellinthefieldofimagerecognition,butforriceleaf disease recognition task,theexisting CNNmodelhas theproblemofinsufficientfeatureextractionability.Inthispaper,arice leaf disease recognition model based on improved ResNet34 is proposed.Thefeatureextraction capabilityof the model is enhancedbyintroducingnon-localatentionmechanismanddeepseparableconvolutionlayer.Thenon-localatention mechanism effectivelyfocuses onthe Keyareas relatedtothediseasein theimage,which improves thesenstivityof the model tothe disease features.The depth separable convolution layer significantly reduces the numberof model parameters whilemaintainingtheperformanceoffeatureextraction.Theefectivenessoftheproposedalgorithmisverifiedby comparing it with ResNet34,ResNet101,VGGl6,VGG19,MobileNetV2 and Swin Transformeron rice leaf disease data set. Compared to the ResNet34 model,the algorithm improved accuracy by 5.6% ,recall rateby 4.8% ,and F1 score by 5.2% . Inaddition,the robustness of thealgorithm is evaluated,and the results show that thealgorithm has good robustness to image rotation,scaling and noise.
Keywords:riceleaf disease;deep separable convolution layer;non-local atention mechanism;deep learning; convolutional neural networks
0 引言
水稻作为全球主要的粮食作物之一,其健康生长对于保障世界粮食安全至关重要[1]。(剩余12506字)