基于大语言模型的交通拥堵预测研究

打开文本图片集
关键词:大语言模型;实时交通信息;交通拥堵预测;时间序列模型;城市交通中图分类号: 文献标志码:A DOI: 10.13714/j.cnki.1002-3100.2025.17.024
Abstract:Withtherapiddevelopmentof China’seconomy,urbanpopulationandvehiclenumbershavesurged,leadingtoincreasinglyserioustraffccongestionissues.Efectivelypredictingurbantraffccongestioniskeytoallviatingthseprobles.Tis paper selectsARIMA,SARIMA,andLSTMmodelsfortraffcflowpredictionandprovidesadetaledintroductiontothemathematicalalgoritmsandpredictionprocesesofthesemodels.TakingtheadministrativeditrictsofSuzhouasanexample,real-time trafic dataandroadconditiondata wereobtainedusingtheBaidu Maps trafic big dataplatformandtheAmapopen platform. Thispapercomparesthepredictionefectivenessofthethreemodelsfromfiveaspects:erorvaluesresidualdistributiontraining los,time-seriespredictionerorndmodelperformance,ultimatelydemonstratingtattheLSTmodelhasbeterpredictiveac curacy and practicality compared to the ARIMA and SARIMA models.
Keywords:largelanguagemodels;real-timetraffcinformationtrficcongestionprediction;tieseriesmodels;urbantransport
0引言
截至2024年6月底,公安部发布最新统计数据,我国机动车保有量达4.4亿辆,其中汽车3.45亿辆,新能源汽车2472万辆]。(剩余5963字)