对抗样本防御技术在深度神经网络中的应用研究

打开文本图片集
中图分类号:TP181 文献标志码:A 文章编号:2095-2945(2025)27-0185-04
Abstract:Withtherapiddevelopmentofdeeplearning technology,deepneuralnetworkshavemade breakthroughsinfields suchasimagerecognitionandnaturallanguageprocesing.However,theexistenceofadversarialsamplesseriouslythreatensthe securityandreliabilityofdepneuralnetworks.Thepurposeofthisstudyistosystematicallyexploretheapplicationof adversarialsampledefensetechnologyindeepneuralnetworks.Byanalyzingthecharacterisicsofthecountermeasuressamples andtheirthreats,weconductin-depthresearchontheprinciplesandmethodsofvariousdefensetechnologies,providing theoretical basis and practical guidance for building a saferand morereliable deep neural network system.
Keywords:adversarial samples;deep neural networks;defense technology;confrontation training;robustness
近年来,深度神经网络在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展。(剩余4373字)