基于改进YOLOv8的遮挡车辆目标检测算法研究

打开文本图片集
中图分类号:TP391.41 文献标志码:A 文章编号:2095-2945(2025)27-0034-05
Abstract:TheimprovedYOLOv8algorithmusesacombinationofPuzleMixandMosaictoreplace theoriginalalgorithm Mosaicdataenhancement method,whichimprovestheproblemoflowacuracyoftheYOLOv8algorithmindetectingoluded objects.Twoatentionmodules,CBAMandSENet,areintroducedintoBackbonetoimprovetheproblemofdificultyin accurately detecting under complex weather and mutual occusion.When calculating regression loss,the EIoU + Soft_NMSmethod isused tosolvetheproblemofmissingoccudedobjectsandslowconvergencespeed.TheimprovedYOLOv8algorithminherits the efficiency of the original algorithm and improves the detection accuracy and accuracy of vehicle targets.
Keywords: target detection; YOLOv8;attention;accuracy;blocking vehicle
车辆目标检测最重要的任务是同时解决准确率与实时性的问题,YOLO算法能够快速识别和跟踪各种物体,该算法的提出代表着实时目标检测这一技术难题的突破。(剩余4030字)