卷积神经网络支持下高相似度图像识别技术研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.41 文献标志码:A 文章编号:2095-2945(2025)27-0050-05

Abstract:ThispaperproposesanimprovedConvolutionalNeural Network(CNN)forhighsimilarityimagerecognition.By integratingmulti-scaleandasymmetricconvolutionalkermelswithResidualNetwork(ResNet)structures,featureextractionis optimized.Dataaugmentationandregularizationenhancemodelrobustnes.Experimentson CIFAR-1OandImageNetsubsetsshow thattheimprovedCNNoutperformstraditionalCNNsandhand-craftedfeaturemethods,efectivelycapturingsubtledierencesin similar images.

Keywords:highsimilarityimagerecognition;ConvolutionalNeuralNetwork;featureextraction;dataaugmentation;residual network

高相似度图像识别在刑侦、医学影像等领域有着广泛应用,但图像间细微差异使得传统手工特征方法难以满足高精度需求。(剩余6006字)

目录
monitor
客服机器人