基于NSCT和PCNN的红外与可见光图像融合方法

打开文本图片集
中图分类号:V445 文献标志码:A 文章编号:2095-2945(2025)27-0042-04
Abstract:Aimingattheproblemsofblurredboundariesandlosttextureduringmultimodalfusionofinfraredandvisible images,afusionmethod basedonnon-subsampledcontourlettransform(NSCT)andpulse-coupledneural network(PCNN)is proposedtoimprovethefusionquality.First,twosetsof sourceimagesare decomposedintohighandlowfrequencysubbands byusingNSCT,andthenfusionrulesbasedonPCNN-areintroducedtofusethehighandlow frequencysubbands.Fialy, inversionreconstructionisapliedtoobtainthefinalfusedimage.Experimentalresultsandobjectiveevaluationshowthatthe fusionmethodinthispaperissuperiortoothercomparisonmethodsandcanefectivelyretaininfraredimagefeaturesandvisible lightimagetextureinfomation.Experimentalresultsshowthatthismethodissuperiortotecomparisonalgorithmintermsof subjectivevisualqualityandbjectiveevaluationindicators(EN=7O1,VIF=0.719),andcanfectivelybalancethecotradictio between maintaining the saliency of infrared targets and extracting visible light texture details.
Keywords:image fusion;non-subsampledcontourlettransform;pulse-coupledneural network;infraredimage;visibleimage
红外和可见光图像融合作为一种多模态融合技术,近年来广泛应用于建筑、电力检测和医学成像等领域。(剩余4564字)