基于SSA-ELM混合模型的光伏出力预测

打开文本图片集
中图分类号:TM615 文献标志码:A 文章编号:2095-2945(2025)25-0058-04
Abstract:Thehighaspectratiodistributedphotovoltaicgridconnection hasbroughtabout manyproblems.Acurateand reliablephotovoltaicoutputpredictionisthefoundationforimprovingthepenetrationrateofhighaspectratiodistributed photovoltaicdistributionnetworkadjustmentandcontrolcapabilities.Therefore,startingfromngineringusabilitythispaper selectstherelativelyeasytoimplementExtremeLearning Machine(ELM)tocarryoutphotovoltaicoutputpredictionInorderto aleviate heproblemoflowpredictionacuracycausedbytherandomnessofELMweightsandbiases,thispaperusesSparrow IntellgentAlgorithmtooptimizeELMweightsandbiases.TheexperimentalresultsshowthatcomparedwiththeoriginalELM, theerrorofthepredictionmodelusedinthispaperisreducedbyhalf,efectivelyimprovingtheaccuracyofphotovoltaicoutput prediction.
Keywords:distributedphotovoltaic;distributionnetwork;ExtremeLearningMachine(ELM);SparrowSearchAlgorithm(SA); accuracy
为了缓解全球气候恶化及化石能源逐渐枯竭等问题,我国甚至全球均在推进以可再生能源为主体的新型电力系统建设,而高比例新能源配电网是新型电力系统的主要特征之一,然而由于分布式光伏出力具有间隙性和随机性,其对配电网冲击越来越明显。(剩余5008字)