基于YOL011与双光图像分析的光伏板积尘检测方法

打开文本图片集
中图分类号:TM615 文献标志码:A 文章编号:2095-2945(2025)25-0001-0
Abstract:Asoneof themostcommerciallyvaluablegreen energysources,solar energyholdsasignificantcompetive advantageinthefieldofpowergeneration.Photovoltaic(PV)modules,beingthecorecomponentsforphotoelectricconversionare pronetodustacumulationontheirsurfacesduringoperation,which blockssolarradiationandleadstoadeclinein photoelectricconversioneficiencyandoutputpower.Existing dustdetectionmethodsbasedonDep LearningAlgorithmsheavily relyontherichnessandqualityofannotateddata.Toadressthisisue,thispaper proposesadustdetectionalgorithmbasedon YOLO11combinedwithhistogramanalysisanddual-lightimagefusion.Firstly,theYOLO11-OBBrotatingobjectdetection algorithmisutilizedtoaccuratelyextractPVstringsandPVmodulesfrombothvisiblelightandthermalimagingimages. Secondly,forindividualPVstrings,theYOLOl1-SEGMENTalgorithmisemployedtodetectdustareasinvisiblelightimages andtoidentifythermalspotsinthermalimagingimages,analyzingthetemperatureofthesespots.Fialytraditionalimage procesingmethodsareappliedtoanalyzethevisiblelightimages,predictingthedustcoverageratiobycombininghistogram features.ThismethodleveragesthepowerfulfeatureextractionandgeneralizationcapabilitiesoftheYOLOlalgorithm, incorporatestraditionalimageproessngmethodsforsecodaryverification,andclasifiestheseverityofdustaccmulationbased onabnormaltemperaturedataofcorespondingcomponentsinthealimagingimages,significantlyimprovingtheacuracyof dust detection in complex scenarios.
Keywords:YOLO11; histogram;photovoltaic dustdetection;dust accumulation severity;photovoltaic module clean
随着太阳能发电技术的快速发展,光伏组件作为太阳能发电系统的核心部件,其运行效率直接关系到整个系统的发电性能。(剩余9972字)