基于机器学习的学生学习成绩预测研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP311 文献标志码:A 文章编号:2095-2945(2025)25-0034-04

Abstract: Studentacademic performance predictionisof great significance for educational decision-making and personalized learning.ThispapertakessomestudentsfromtheColegeofArtsandSciencesofNortheastAgriculturalUniversityinthe2021 and02graduatingclasesastheresearchobjects.Troughquestionnairesurveys,dataonstudents‘learning habits,sef-study, cognitivedrive,andenvironmentalfactorswerecollected.Corelationanalysiswasusedtoselette1Omostrelevantfactorsand theK-meansalgorithmwasemployedforclustering,dividing thequestionnairerespondentsinto5categories,among which categories 0 and1are more likely to have failing grades.Combining theselectedfactorswith the clustering results,a GPA predictiomodelbasedonCNNwasconstructed,incorporatingkeyfeaturessuchasself-disciplineandstudyplans.Themodel architectureincludesconvolutionallayers,polinglayers,andfullconectedlayers,andaDropoutlayerwasintroducedto enhancegeneralizationability.Understrictvalidation,themodelwasevaluatedusing MSEandMAE,demonstratingexcellent GPApredictionperformance.Theresearchresultsshowthatstudents‘academicperformanceismainlyinfluencedby1Ofactors: Whethertheyhavethehabitoforganizingnotesandreviewmaterials,howtheyspendtheirentertainmenttime,theeficiencyof atendingclasses,thesituationofformulatingstudyplans,participationincompeitions,thecompletionofstudyplanswhether theyhaveaclearplanforthefuture,whethertheyatendeveningself-studyduring non-examwees,learningself-awarenes, andwhethertheyparticipateinsecondclasroomactivities.TheConvolutionalNeuralNetworkmodelshowsgoodperfomancein predicting student behavior time series data,providing a new idea for personalized learning.

Keywords: academic performance; machine learning; K-means; CNN; performance prediction

在当今社会,高等教育机构肩负着培养高素质人才的重要使命,其教育质量直接影响国家发展与进步。(剩余3120字)

目录
monitor
客服机器人