老年髋部骨折患者术前深静脉血栓形成的机器学习预测模型构建

打开文本图片集
中图分类号 R683 文献标识码 A文章编号 2096-7721(2025)06-1019-06
Development a machine learning prediction model for preoperative deepvein thrombosisin elderlyhipfracture patients
HUANG Yufeng QIU Yanran
AbstractObjective:Toidentifyriskvariablesfor preoperativedeepvein thrombosis (DVT)formation inelderly patients withhip fractures usingmachinelearingalgorithmsandtoconstructanomogrammodelforoptimizingpreoperativeasessenandpreventive measures.Methods:174elderlypatients withhipfracturesfromJune2023 toDecember2024 wereenroledand divided ito the thrombus group(n=57)andthenon-thrombus group (n=117)basedonpreoperativelower extremityvenous ultrasonography.Two machineearningalgorithms,LeastAsoluteShikageandSelectionOperatorLASO),ndSupportVectorMacine-RecusieFature Elimination(SE)sellauivaeListicgordtreeaisbl.li highestAUCwasselectedtoosrctheomoam,flowdbyalidatio.Results:MultivarateLgistcegesioidentifdtro injutt systemicmmune-inflammationindex(SII)asindependentiskfactorsfrpreoperativeDVT.TheLASSOmodel generatedineatures withnon-zerontsuigtfrjutspialdiss,W,,Nroe-te ration(MLR),LR,ndSeValgidentifdfisribs,cuingtifrojutospitadi D-dimer,FIB,ndSIROCanalissoedtatthAUCforLSOSVFE,andLgisigressnere069,97d93, respectively. The SVM-RFE model had the highest sensitivity (98.18 % ) and specificity (90.77 % ). The SVM-RFE model was selected to construtheomogam,andtheHosmer-Lemeshowgoodness-fitestdemonstratedgoodcalirationabilitythenogam χ2 =2.157, (20 P =0.867).ConcusionTheconstructedomogamodelcanasisthaltcareproviders inaccuratelyassessgthepreopertiveDV riskinelderlypatitsihifrcturs,tebyabgtielypreventivemeasues,tiingtealoatiodicalsod improving the quality care.
KeyWordsHipFracture;Deep Vein Thrombosis;Machine Learning;Nomogram Model; Risk Prediction.
髋部骨折是老年人常见的骨骼损伤,其发病率随着人口老龄化的加剧而不断上升。(剩余9504字)