人工智能辅助超声弹性成像在甲状腺结节良恶性鉴别中的应用

打开文本图片集
中图分类号 R445.1 R581文献标识码 A文章编号 2096-7721(2025)06-0910-06
Application AI-assisted ultrasound elastography in differentiating benign and malignant thyroid nodules
ZHOU Wei WANG Chuang ZHAN Wentao LIANG Runa
AbstractObjective:ToinvestigatetheapplicationA-assistedultrasoundelastographyindiferentiatingbenignandmaligant thyroidnodules.Methods:81patientswithpathologicallyconfirmedthyroidnodulesat fromJuly2019to February224underwentA-asistedultrasoundelastogaphy.Theresultserecomparedwithpathologicalfidings(thegoldstandard), withthe Kappa testused toevaluateconsistencyROCcurves were plotedtoassessdagnosticefcacyResults:Among 96nodulesfrom 81patients,patologyidentifedaligantad3enignnodules.Aasistedelastogahyfiingmachedpathologalresultsin76 nodules (concordance rate: 79.16% ; missed diagnosis rate: 4.54% ), showing strong consistency (Kappa value= 0.785, P<0.001 ). Malignant noduleshowdistcohgd,ndeueauresrarilaisdeIilnigoulesade O~I.The sensitivity,specificity,and AUC AI-assisted elastography for differentiation were 93.42% 91.55% ,and 0.920( 95% CI: 0.859~ 0.939),respectively, surpassing standalone AI or elastography P<0.05 ).Conclusion: AI-assisted ultrasound elastography has significant advantage indiferentiatingbenignandmalignantthyroidndules.Itscoreclinicalvalueliesinleveragingdeplearingalgorits to acuratelynalelasograicauresablgientngaligantdentiatio.Thisppoachproidesliableostic references while reducing subjectivity and uncertainty.
Key wordsArtificial Intelligence; Thyroid Nodules; Elastography
甲状腺结节在临床中较为常见,随着高分辨率超声检查在体检和临床诊疗中的广泛应用,甲状腺结节检出率显著提高。(剩余10863字)