YOLO-Ee:一种用于烟草粉螟检测的改进型自标检测方法

打开文本图片集
中图分类号:S379.5 文献标志码:A 文章编号:2096-9902(2025)23-0032-06
Abstract:TomitigatequalitylossescausedbyEphestiaelutella(tobaccomoth)duringstorageandtoovercomethe ineficiencyandsubjectivityofmanualmonitoring,thisstudyaimstodevelopahigh-precision,deployableautomateddetection model.noveldetector,YOLO-Ee,wasbuiltontheYOLOv12backbonebyincorporating windmillshapedconvolutions(SConv) andanenhancedPSC3k2module.Atrap-boardimagedatasetwascompiledandenlarged throughdata-augmentation techniques. The modelwas evaluatedagainst mainstream detectors-FasterR-CNN,YOLOv5,andYOLOv8-using mean AveragePrecisionat 0.5IoU(mAP @0.5 5)and related metrics.YOLO-Ee achieved a mAP @0.5 of 94.7% ,outperforming Faster R-CNN, YOLOv5,and YOLOv8by6.34.1,and.8percentagepoints,respectivelywithsuperiorperformanceonsmallanddenselyclusteredtargets. TheimprovedYOLO-Eemodeldeliverseficientandaccurateidenticationoftobaccomothsontrapboards,oferingareliable solution for warehouse pest monitoring and paving the way for future edge-computing applications.
Keywords: Ephestiaelutella; object detection; YOLO-Ee; PSConv; pest monitoring; deep learning
烟草粉螟(Ephestiaelutella)是一种世界性分布的多食性仓储害虫,主要侵害烟草、小麦、可可及干制坚果等农产品,对烟草行业危害尤甚[-2]。(剩余9665字)