基于改进U-Net模型的筏式养殖区提取分析

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:S967 文献标志码:A 文章编号:2096-9902(2025)23-0026-06

Abstract:Withtheincreaseinpopulationandtherisingdemandforseafood,marineaquaculture,especiallraftfarming, hasexpandedrapidly,whichhassubsequentlyledtomanyenvironmentalproblems.Thetraditionaldatacolectionmethodsfor aquacultureareineficientandcannotmetthedemands.Thisstudyaddressestheextractionprobleminofshoreraftfarming areasandproposesanextractionmethod basedontheU-Netdeplearning model.Taking Dalian Cityasanexample,basedon sateliteimages,thetransferlearingenhancesthegeneralizationabilityofthemodel,adoptsadynamicleaningrateadjustment mechanismtoimprove trainingeficiency,andintroducesanatentionmechanismtofocusthemodelonkeyareas.The experimentsshowthatthemodelperformsexcelentlyinextractingtheraftfarmingareasinDalianCity,withaDicecefficient of0.9572.TheIUandDicecoeficientsofthetestsetimagsarealsogoodverifyingthestrongadaptabilityandrobustsof themodelfordiferentfarmingdensityareas.Thisstudyprovidesaneficientandaccuratemethodformonitoringmarine aquaculture and offersa scientific reference for related research.

Keywords: deep learning; U-Net model; raft breeding area; transfer learning;attention mechanism

近年来,随着人口增长及人们对优质海产品需求的不断攀升,近海养殖作为渔业生产的关键构成部分,迎来了迅猛发展期。(剩余9213字)

目录
monitor
客服机器人